River-Crossing Riddles Through the Ages

New 3QD-column:

Have you ever been in this situation where you had to get a group of 3 men and their sisters across a river, but the boat only held two and you had to take precautions to ensure the women got across without being assaulted?

This problem is one of 53 puzzles in the oldest extant puzzle book in the Western (Latin) tradition: the Propositiones ad acuendos iuventes or problems to sharpen the young. Its authorship is uncertain but it is often and plausibly attributed to Alcuin, who possibly sent them to the Frankish ruler Charlemagne in 800 AD. I hope you will allow me a brief introduction of these puzzles, before I go on to do what I hope will by then be redundant, namely spelling out why I think you should be thrilled by their existence.

More here.

Why Teach Math? Two Voices From The 1920s

New 3QD-column: Tatiana Ehrenfest-Afanassjewa and Eduard Jan Dijksterhuis on intuition and abstract thought in math class.

“Am I ever going to use this later?” As a math teacher, I seem to be getting this question about once a month (which is actually less frequently than I would have predicted). It is asked with varying degrees of openness to the idea that a satisfying reply is even conceivable, but almost invariably by students who are probably justified in believing that their tertiary education or future career is going to involve preciously few linear equations indeed.

See here.

Math as an Art Paul Lockhart’s Mathematician’s Lament

Paul Lockhart starts his “Mathematician’s Lament” (later expanded into a book under the same title, but I’ll be discussing the shorter article here) by comparing math class to a misshapen music or art class. Suppose that in music class, enjoying actual music is supposed to be too advanced for children, so they are made to start with memorizing the circle of fifths and pointing the stems of quarter-notes the right way; or suppose that in art class, painting is postponed until after preparatory “Paint-by-Numbers” classes. This, Lockhart suggests, is how math class works; it stifles creativity and natural curiosity and therefore goes against the spirit of mathematics.

Continue readingMath as an Art Paul Lockhart’s Mathematician’s Lament

Blended Learning: Kwadratische verbanden in 3HAVO Afsluitende blogpost voor Onderwijskunde(-IV) aan de lerarenopleiding Windesheim

(Update achteraf: Neem de eerste letter van elke zin.)

Onderwijskunde-4 wordt naast het gezamenlijke dossier afgesloten met een individuele conclusie en blogpost. Hieronder volgt mijn reflectie op onze ‘blended’ leeromgeving in blogpostvorm.

Continue readingBlended Learning: Kwadratische verbanden in 3HAVO Afsluitende blogpost voor Onderwijskunde(-IV) aan de lerarenopleiding Windesheim

Lof van het gedisciplineerde denken

Ger Groot schreef deze week in Trouw een opiniestuk naar aanleiding van een eerder artikel in Trouw (6 april, p. 7 van de Verdieping) van Hanne Obbink over de profielkeuze van middelbare scholieren.

Kort gezegd sluit die profielkeuze steeds meer aan bij het stereotype dat C&M een profiel is voor losers dat ook daadwerkelijk studiemogelijkheden afsluit, en is N&T het profiel dat je doet als je slim bent en dat alle deuren opent – inclusief talen en cultuurstudies, die beter lijken aan te sluiten bij C&M. Dat leidt ertoe dat leerlingen steeds vaker de N-profielen kiezen als het maar even kan.

Continue reading “Lof van het gedisciplineerde denken”

Fareed Zakaria: Lof van de vrije studie

Toen Fareed Zakaria als tiener nog in India woonde, moest hij net als iedereen kiezen tussen drie richtingen: “science, commerce, or the humanities. […] In those days, the choices were obvious. The smart kids would go into science, the rich kids would do commerce, and the girls would take the humanities.” (22)

Continue reading “Fareed Zakaria: Lof van de vrije studie”